About digital collation

David J. Birnbaum (University of Pittsburgh)
Digital Humanities Literacy Workshop
Carnegie Mellon University
2016-05-18

Outline

- What is collation?
- The Gothenburg model
- Collation with CollateX

What is collation?

- **What**: Alignment and comparison of textual witnesses
- **Why**: Support text-critical analysis and edition
- **Input**: Multiple textual witnesses to the same work
- **Output**: Alignment of variants

Types of variation

- **Textual**: insertion, deletion, mutation, transposition
- **Substantive ~ non-substantive**
 - Substantive: equipollent, linguistic, scribal error
 - Non-substantive: graphic
- Ignore non-substantive variation for comparison
 - Punctuation
 - Upper ~ lower case
 - Orthographic variation
 - Variant letterforms
 - Abbreviation

Types of output

1. Interlinear (synoptic) edition
 - Variant table
2. Critical apparatus
3. Variant graph
4. TEI XML
5. Stemma codicum

1. Interlinear (synoptic) edition

- Blocks: lines
- Rows: witnesses
- Columns: aligned tokens
- In this edition
 - Bold: graphic variation
 - Underline: equipollent reading
 - Orange: scribal error
 - Blue: linguistic variant
 - Other: deletions (red), insertions (green)
1. Sample interlinear collations

- Povest vremenlykh let (Rus' primary chronicle)
 - Donald Ostrowski (Harvard University), David J. Birnbaum (University of Pittsburgh), Horace G. Lunt (Harvard University)
 - http://pvl.obdurodon.org/browse.xhtml
- Galician-Portuguese secular lyric: philology and historical linguistics
 - Helena Bermúdez Sabel (Universidade de Santiago de Compostela)
 - http://gl-pt.obdurodon.org/index.xhtml

2. Critical apparatus

- Main text (reconstructed)
- Text type
- Traditio textus
 - Witnesses and loci
- Apparatus criticus (negative)
 - Location, lemma, reading, sigla

3. Variant graph

- Significant variants
 - Equipollent (textual)
 - Linguistic
 - Scribal error
- Insignificant variants
 - Graphic
- History of edition
 - Critical annotations from prior editions: (negative)

4. TEI parallel segmentation

- Plain text: Shared textual reading
- app: Variation locus
- <rdg wit="#one">se</rdg>
- <rdg wit="#two">ad</rdg>
- <rdg wit="#three">me</rdg>
- at orment an
- <app>
 - <rdg w:="en">en jardín</rdg>
</app>

5. Stemma codicum

- Hypotheses about textual transmission
- Nodes
 - Greek sigla, other
 - Hypothetical
 - Upper-case Latin sigla, aqua
 - Lower-case Latin sigla, violet
 - Lost manuscripts
- Edges
 - Solid line
 - Antigraph → apograph
 - Dotted line
 - Contamination
6. Other output formats
• Plain text variation table
• HTML variation table
• XML variation table
• GraphViz DOT
• Etc.

The Gothenburg model
• History and goals
• Components
 1. Tokenization
 2. Normalization/regularization
 3. Alignment
 4. Analysis
 5. Visualization/output

The Gothenburg model: history and goals
• Developers of CollateX and Juxta
• Gothenburg 2009 joint workshop
• Sponsored by COST Action 32 and Interedition
• Identify core components of textual comparison at an abstract level

1. Tokenization
• (Presumes transcription and digitization)
• Divide the continuous text into units to be aligned (tokens)
• Typically whitespace-delimited words
 – May be at any level of granularity
 – “Syllables, words, lines, phrases, verses, paragraphs, or text nodes”
• Challenges
 – Ambiguity
 – Punctuation
 – Contraction, superscription, etc.
 – Markup

2. Normalization/regularization
• Normalization during transcription ~ collation
• Ignore non-substantive variation for comparison
 – Punctuation
 – Upper ~ lower case
 – Orthographic variation
 • Variant letterforms
 • Abbreviation
• What goes into the output?

3. Alignment
• Alignment table
• Depth vs breadth
• Complications
 – Repetition
 – Transposition
 – Order effects
 – Computational complexity
 – Exact vs near (fuzzy) matching
4. Analysis/feedback

- Interpretation beyond linear alignment
- Manual intervention?

5. Visualization/output

- Markup, for further processing
 - XML, TEI, JSON, GraphViz DOT, LaTeX, etc.
- Textual alignment table, final form for edition
 - Plain text, HTML, PDF
- Textual visualization, for examination and analysis
 - Juxta
 - Versioning machine
- Graphic visualization, for examination and analysis
 - Variant graph

CollateX

- Java, Web app, and Python module
 - CollateX Java version:
 - http://collatex.net
 - CollateX Python package:
 - https://pypi.python.org/pypi/CollateX
 - CollateX Python tutorial:
 - http://collatex.obdurodon.org
- Input: Anything at all (JSON)
- Output: Anything at all (JSON)

CollateX: Benefits and limitations

- Benefit
 - Complete control over input, tokenization, normalization, collation, and visualization (output)
- Limitation
 - Requires user programming (Python, possibly others)

Thank you!

- David J. Bimbaum (University of Pittsburgh)
 - djbpitt@gmail.com
 - http://www.obdurodon.org

Materials for this presentation were developed with the assistance of Helena Bermúdez Sabel (Universidad de Santiago de Compostela). An earlier version of this presentation was delivered at the Text as Process conference (University of Pittsburgh, 2016-04-05).